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What do we actually want in this setting?

(in math)

Given a patient with features X € 2 and unknown diagnosis Y € %, we want a
prediction set C(X) with class-conditional coverage for some small @ > 0:

YeCX)|Y=y)>1-a

forallclassesy € %
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Q: Can we use conformal prediction to solve this problem?

A: Yes, but naive methods struggle when there are many classes and/
or limited labeled data.

In these situations, we must be a bit cleverer.
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Review of conformal prediction (CP)

Standard CP

0) Use model f to define a conformal score function s(x,y)

e.g., if foutputs a vector of softmax scores, can use s(x,y) = 1 — fy(x)

1) Apply s(x, y) to n labeled calibration data points to get
conformal scores

2) Let ¢ = [(1 — a)(n + 1)] largest score

At test time, construct prediction set as

CoTANDARD Kiest) = 1V & S(Xigsts V) < 21\}
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Fact: As long as the calibration points and the test point are exchangeable,
standard CP achieves marginal coverage:

PYeCX)>1-a

Proof:

X, Y)),.... (X, Y )and (X Yies) are exchangeable

est’

Note: all we need for valid coverage is
exchangeable conformal scores

—> any ordering of s(X;, Y}), ..., (X, Y ) and s(X,.q, Yies) 1S €qually likely

1 — + 1
=—> P(5(Xieet> Yieqr) is one of the|[ (1 — a)(n + 1)] smallest scores ) = (1= a)n+ 1] >1—-a

v

— |]:D(S()(tesv Ytest) S /q\) — |]:D(Ytest S C(Xtest))

est’
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Marginal coverage » class-conditional coverage

An ImageNet case study

100% i

Standard CP on
ImageNet using
50,000 calibration
Images

Actual coverage for “flamingo” images: 50.8%
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Classwise CP

A naive adaptation of CP that achieves class-conditional coverage

1. Split calibration data by class.

2. Estimate separate g , for each class.

3. Construct prediction sets as Cop asswise(Xiest) = 1 1 §Xiest» ) < G, )

Cer asswisg(Xiest) Will have class-conditional coverage, but requires a lot of data per
class.

11
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Standard CP

Low variance

) No class-conditional
coverage guarantee

Our method: Clustered CP

+’ Key idea:

Combine data from
classes that are “similar”

Classwise CP

& High variance

Class-conditional
coverage guarantee

12



Clustered CP

(in one line)

CoLusTERED(Kiest) = 1 1 $(Xiests V) < qg(h(y))}

where
e N Y — {1, ..., M} isa clustering function

g (m) is the conformal quantile computed
using the calibration data in cluster m

13
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How should we design our clustering function /?

For any /1, we get coverage: But our goal is to get class-conditional coverage:

P(Yiest € CeLusTEREDKiest) | 2 (Yieg) = 1) 2 1 — a P(Yiest € CeLusTEREDKiest) | Yiest =) 2 1 — @

forallclustersm=1, .... M forallclassesy € %

When does cluster-conditional coverage imply class-conditional coverage?
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Proposition 1 (informally):

L.et 2* be a clustering function such that all classes assigned to the
same cluster have conformal scores that are exchangeable.
Then, cluster-conditional coverage will imply class-conditional

coverage.
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Proposition 1 (informally):

L.et 2 be a clustering function such that all classes assigned to the
same cluster have conformal scores that are exchangeable.
Then, cluster-conditional coverage will imply class-conditional

coverage.

In other words, we should group classes that have similar score distributions.

15



Designing clusters with exchangeable scores

Quantile-based clustering

Step 1: Create an embedding for the empirical score distribution of each class by
creating a vector of quantiles.

Step 2: Apply k-means to these embeddings.

16
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What if we don’t have perfect exchangeability within clusters?

Proposition 2: Let $” denote a random variable sampled from the score distribution
for class y. If the clusters given by /& satisfy

Do(S,8")<e  forally,y'st h(y) = h(y),
then Cp ysterep Will satisty

P(Y o € CXioet) | Yies =) 21 —a—€, Vye ¥%.

est

Note: The Kolmogorov-Smirnov distance of riv.s X and Y I1s defined as

DKS(X’ Y) = SUP )R I PX<A)—-—PY<A)] 18
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Data sets and score functions

Data
Data set ImageNet CIFAR-100 Places365 iNaturalist
(Russakovsky et al., 2015)  (Krizhevsky, 2009) (Zhou et al., 2018) (Van Horn et al., 2018)

Number of classes 1000 100 365

Class balance 0.79 0.90 0.77

Example classes mitten orchid beach salamander
triceratops forest sushi bar legume
guacamole bicycle catacomb common fern

*The number of classes in the iNaturalist data set can be adjusted by selecting which taxonomy level (e.g., species, genus,
family) to use as the class labels. We use the species family as our label and then filter out any classes with < 250 examples

in order to have sufficient examples to properly perform evaluation.

Conformal score functions

softmax: 1 - (softmax score of base classifier)

APS: designed to achieve better X-conditional coverage

RAPS: regularized version of APS that often produces smaller sets

20



A closer look at iNaturalist

Challenges: many classes and extreme class imbalance (the most common

class has 275x more images than the least common class) .



CovGap: how far is the class-
conditional coverage from our desired

coverage level of (1 — a)?

1 5
CovGap = 100 X Z ¢, — (1 —a)|
Y1 =

where ¢, is the coverage of classy,

as computed on our validation
dataset.

22



ImageNet: softmax ImageNet: APS ImageNet: RAPS
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AvgSize: what is the average
size of the sets?

23
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30 Classwise
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FracUndercov: what
fraction of classes are

severely* under-covered?

1 4 A
FracUnderCov = ﬁz 1{c, <1—-—a-0.1}

y=1
*having a class-conditional
coverage more than 10% below
the desired coverage level
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Recommendations for practitioners

For a given problem setting, what is the best way to produce prediction sets that have
good class-conditional coverage but are not too large to be useful?

(1T low class imbalance)

25



Conclusion

Summary

1. Marginal coverage is not enough. In many settings, we want to have class-conditional
coverage.

2. Class-conditional coverage is hard to achieve when there are many classes and limited data
per class.

3. Clustering classes with similar score distributions allows us to share data between classes in
a way that will achieve good class-conditional coverage

Future directions?

Generalizing our clustering approach to achieve group-conditional coverage for any grouping.

26



Thanks!

For more details: To try it yourself:

Paper code: github.com/tiffanyding/
class-conditional-conformal

arxiv.org/abs/23506.09355

PyTorch implementation by SUSTech:
github.com/ml-stat-Sustech/ TorchCP



http://arxiv.org/abs/2306.09335
http://github.com/tiffanyding/class-conditional-conformal
http://github.com/tiffanyding/class-conditional-conformal
http://github.com/tiffanyding/class-conditional-conformal
http://github.com/ml-stat-Sustech/TorchCP
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AvgSize

Randomized versions to achieve exact 1 — a coverage
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